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SUMMARY

The error in computing the horizontal pressure gradient force near steep topography is investigated in a primitive
equation,s-co-ordinate, numerical ocean model (Blumberg and Mellor, inThree-Dimensional Coastal Ocean
Models, Vol. 4, American Geophysical Union, Washington D.C., 1987, pp. 1–16). By performing simple test
experiments where the density field is allowed to vary in both the vertical and the horizontal direction, severe
errors are detected in the areas where the isopycnals hit the sloping bottom. An alternative method of computing
the pressure force (Stelling and van Kester,Int. j. numer. methods fluids, 18, 915–935 (1994) is adopted, resulting
in substantial reduction of the errors. However, a systematic underestimation of the calculated quantities is
revealed, leading to erroneous depth-mean values of the pressure force. In this study a modification of the
Stelling and van Kester method is proposed which seems to improve the overall performance of the method.
# 1997 by John Wiley & Sons, Ltd. Int. j. numer. methods fluids 24: 987–1017, 1997.
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1. INTRODUCTION

Ocean currents appear basically to be geostrophically balanced. An accurate treatment of the
horizontal pressure gradient (HPG) forces is therefore of vital importance when numerical models are
applied to study the oceanic circulation. Assuming a hydrostatic pressure distribution in the vertical,
the HPG force (per unit mass) can be written as
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wherep is the pressure,H is the horizontal gradient operator,r is the density andg is the constant
acceleration due to gravity. To get the HPG force in the form (1), we have assumed a constant
atmospheric pressure at the free surfacez � z�x; y; t�. The numerical model employed in the present
study is a version of the rather well-merited Blumberg–Mellor (BM) ocean model,1–3 frequently also
referred to as the Princeton ocean model. This is a primitive equation (hydrostatic) model making use
of a terrain-following vertical co-ordinate, i.e. the so-calleds-co-ordinate, and the finite difference
equations are solved on a three-dimensional�x; y; s) grid. Terrain-following co-ordinates have been
applied in numerical weather prediction models for many years.4 Furthermore, it is well known that
such a co-ordinate system may increase the truncation errors in the finite difference calculations of
the HPG forces, especially when there is strong vertical stratification in areas with steep bottom
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slopes.5,6 A related problem with this type of co-ordinate system is that it can render the numerical
scheme ‘hydrostatically inconsistent’.7,8 This means that the difference between the discrete and the
analytical version of the HPG force does not decrease when the vertical resolution is increased. This
happens when a certain condition, involving depth, bottom slope and horizontal and vertical grid
distances, is violated.9 A discussion of these problems in numericaloceanmodels was given by
Haney.10 His conclusion was that one should use as manys-levels as possible, but at the same time
comply with the condition for hydrostatic consistency.

However, as pointed out by Melloret al.,11 the hydrostatic consistency requirement is quite
difficult to fulfil in oceanic applications. Furthermore, they show that when the density is a function
of the vertical co-ordinate (z) only, the truncation errors of the HPG terms are eliminated for those
particular locations within the fluid where the limiting value of the condition for hydrostatic
consistency is reached. Using the same numerical model as employed here, Melloret al.11 presented
some numerical results from which they argued that the inherent problems of thes-co-ordinates
seemed to be surprisingly unimportant. This conclusion, however, was based mainly on model
comparisons of depth-integrated quantities. As will be shown in this study, these quantities are not as
much affected as the three-dimensional velocity structure. This is because the original BM model
produces large errors in the HPG forces which more or less cancel when integrated in the vertical.

Recently, a new method for computing HPG forces was presented by Stelling and van Kester.12

This method can be used both in the calculation of horizontal pressure gradients as well as for
evaluating horizontal diffusive fluxes (to avoid artificial diapycnal mixing). In their paper, Stelling
and van Kester12 mainly focus on the treatment of the diffusive fluxes. Consequently, their method is
constructed so as to ensure that gradients of concentrations are always reduced for every time step,
i.e. fulfilment of the so-called min-max condition. Even though this is an important condition for
diffusion problems, our experimental results indicate that this requirement leads to a systematic
underestimation when the method is applied to calculate HPG forces. Furthermore, Stelling and van
Kester12 only present test results where the correct solution is equal to zero. This means that if their
method underestimated the HPG force, the test experiments described in their paper would not have
revealed this fact.

In Section 2 a description of thes-co-ordinate transform will be given. Here we also present the
two finite difference formulations of the HPG forces applied in the original BM model and in the
Stelling and van Kester (SvK) method respectively. In addition, a slightly modified version of the
SvK method will be presented. It has been introduced to reduce the previously mentioned
underestimation that seems to be inherent in the original SvK method. In Section 3 these methods are
applied to calculate the HPG force in some idealized cases where the analytical (true) solution is
known. In Section 4 the differences inmodelperformance of the various numerical methods are
demonstrated. Finally, in Section 5 some concluding remarks are given.

2. TERRAIN-FOLLOWING CO-ORDINATES IN NUMERICAL OCEAN MODELS

There are several reasons for using a terrain-following (s) co-ordinate. One of the main benefits is
that the bottom profile does not need to be approximated by a staircase form, as is the case when
depth, i.e.z, is used as the vertical co-ordinate. When constructing a discrete depth field for use in az-
co-ordinate model, gentle variations in the bottom topography are easily lost. Instead of a slight
bottom slope, the discrete depth field will consist of large horizontal areas separated by more or less
severe jump discontinuities. Associated with these abrupt depth changes, large vertical velocities are
very often found.13 Another advantage of thes-system is that the kinematic bottom boundary
condition becomes very simple. This is due to the fact that the bottom is a co-ordinate surface.
Furthermore, for processes where the dynamics of the bottom boundary layer is important, a good
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resolution of the bottom boundary layer is achieved in as-system simply by increasing the number of
sigma layers close to the bottom. Alternatively, in az-co-ordinate model an increased resolution
would be needed over the whole depth interval spanned by the bottom. In addition, the terrain-
following co-ordinate system is also advantageous when considering computer resources. This is
because the grid points are always kept within the fluid, thereby automatically increasing the vertical
resolution in shallow areas.

Unfortunately, there are also some inherent disadvantages associated with the use ofs-co-ordinates
in numerical models. One important problem that has evoked considerable concern is related to the
size of the truncation error when computing the discrete version of the HPG force. Another
undesirable side-effect of the co-ordinate transformation is that the horizontal diffusion terms may
introduce artificial diapycnal mixing. A method to reduce this diapycnal mixing has already been
implemented in the BM model.14

In this presentation we will focus on the problem with the HPG force. However, both the
difficulties with the diapycnal mixing and the increased truncation in the calculation of the pressure
force are related to the two-term representation of horizontal derivatives in thes-co-ordinate system.

2.1. Thes-co-ordinate transform

For oceanic applications thes-co-ordinate is generally defined by

s �

z ÿ z

H � z
: �2�

Here z is the Cartesian vertical co-ordinate,z�x; y; t� denotes the position of the sea surface and
H�x; y� is the undisturbed ocean depth. The total depth is thenD � H � z. With this definition there
is a one-to-one correspondence between the allowed values ofz 2 �ÿH; z� and s 2 �ÿ1; 0�. For a
rigid-lid ocean the terrain-following transformation is reduced to

s � z=H : �3�

For simplicity reasons the transformation (3) is preferred in error analysis, although the
transformation (2) is usually applied in the numerical models. As long asjzj � H , the difference
between the two transformations is of minor importance.

In Figure 1 we have depicted a possible distribution of sigma levels when there is a linear slope in
the bottom topography. Each curve represents a constants-value.

Figure 1. Sketch of possible distribution of sigma levels in an ocean model with linear slope in bottom topography
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Application of the chain rule gives the relations between derivatives in the ordinaryz-system and
the s-system. Ifs is defined by (2), these relations can be expressed as
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In (4) the variablex denotes either horizontal co-ordinatesx; y or time t. With s defined by (3), these
relations become
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In (6) the variablex denotes only horizontal co-ordinates, sinces now is time-independent. The
subscripts in the equations above indicate that thex- andy-derivatives are to be performed along lines
of constant values ofz or s in the respective co-ordinate system. The second term on the right-hand
side of (4) and (6) therefore represents a correction which compensates for the vertical change due to
the tilt of thes-levels.

Applying (2), (4) and (5), the HPG force from (1) becomes in thes-system
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Here we have introducedHz andHs to denote ‘horizontal’ gradients along surfaces of constantz and
constants respectively. Since isopycnal surfaces are almost horizontal in the ocean, horizontal
gradients of density are relatively small quantities compared with vertical gradients. However, in
areas of steep bottom slopes the density gradients along the tilting surfaces of constants may become
large owing to significant vertical changes in density. Accordingly, in such areas the integrand of (8)
becomes the difference between two large terms of approximately the same size. Analytically, this
represents no problem, but when the two terms in the integrand are discretized for use in a numerical
model, the truncation error of each term may become of the same size as or greater than the
horizontal gradient we are seeking.

In order to reduce the magnitude of each term in the integrand of (8), we express the density as

r � �r�z� � r̂�x; y; z; t�; �9�

Here �r�z� is a horizontal mean of the density field. Within the frame of the Boussinesq approximation
the HPG force then becomes
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whererr is a constant reference density. As pointed out by several investigators,15,16 the removal of
the z-dependent density distribution�r�z� may improve the results in those situations where there are
only small horizontal density differences within the model domain. However, when there are large
horizontal differences, i.e. situations where the integral of (10) contributes significantly to the depth
variation of the HPG force, the removal technique may be of less help.10
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2.2. The discrete formulation of the HPG force

Since the main problem with the HPG force in three-dimensional numerical ocean models are
related to the treatment of the integral in (10), we will here focus on the discretization of this
expression. In the rest of this subsection we will therefore assume that the surface is level
everywhere, i.e.z � 0, andD � H�x; y�.

The grid point numbering is depicted in Figure 2. Here the quantitiesdxi; dsk and �sk are defined as
dxi � xi ÿ xiÿ1; dsk � sk ÿ sk�1 and �sk � 0�5�sk�1 � sk� respectively. Density (i.e. salinity and
temperature) and pressure are defined at the points�xi; �sk� and�xiÿ1; �sk�. The vertical velocities are
defined at the samex-points but at thesk-levels. An Arakawa C grid is employed and therefore thex-
component of the horizontal velocity,Ui;k , is defined at the points�xi � 0�5�xiÿ1 � xi� and �sk . Since
the HPG force is needed in the calculation of the horizontal velocity, this force is calculated at the
same grid points asUi;k .

For s-co-ordinate models, Haney10 emphasized, as mentioned in Section 1, the importance of
specifying grid distances such that the ‘hydrostatic consistency’ condition is always fulfilled. This
requires that
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From (11) it is seen that by increasing the number ofs-levels and thereby decreasingds, the
consistency condition will sooner or later be violated.

In Figure 3(a) we have shown an example of a hydrostatically consistent distribution of two
neighbourings-levels, whereas Figure 3(b) depicts an inconsistent distribution. It is seen that the
geometrical interpretation of this criterion is that a horizontal displacement of one grid distance from
a givens-level should not result in a crossing of thes-level immediately above or below.

2.2.1. The discrete HPG force in the original BM model.In our version of the BM model the
discrete form of thex-component of (10) was formulated as

XPGi;k � g
Hi � Hiÿ1

2rr

r̂i;1 ÿ r̂iÿ1;1

dxi

ds1

2
�

P
kÿ1

k0�1
Fi;k 0d �sk0

� �

: �12�

Figure 2. Grid point numbering and position of calculated HPG force
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Here

Fi;k �
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where we have definedd �sk � �sk ÿ �sk�1. (When the surface elevation is non-zero, the depth valuesH
in (12) and (13) are simply replaced by the total depth valuesD.) The integration is thus performed
with an ordinary midpoint formula, where we assume that the density is uniform with depth between
the surface and the depth of the uppermost values of density. As long as the bottom is level, i.e.
Hi � Hiÿ1, then naturally (12) and (13) are identical with the equations in a Cartesian co-ordinate
system.

As shown by Haney,10 it is possible to do some calculations in finite difference form on (12) and
(13) if we take r̂ to be either linearly dependent onz or totally independent ofz. It should be
mentioned that Haney’s expressions were slightly different from (12) and (13) since he was analysing
the departure of the HPG force from its depth-mean value. Following Haney’s procedure, we find that
for a density perturbation which is uniform with depth, our discrete version (12) of the HPG force
becomes

XPGi;k � ÿg
�Hx

rr

dr̂

dx
�sk : �14�

Here we have used the standard expressions for horizontal differencing and averaging. If we calculate
the analytical expression (10), we find that (14) is an exact finite difference form of the true answer.
As can be seen from (14), the error in the calculation of the HGP force depends solely on the
horizontal differencing.

If, on the other hand, the density perturbation is a linear function ofz only, i.e.

r̂i;k � r̂0 ÿ
rr

g
N2

0 �skHi; �15�

wherer̂0 andN2
0 are constants, then the HPG force should be identically zero. Substitution of (15)

into (13) reveals thatFi;k vanishes completely in this case. The only error contribution therefore
comes from equation (12) and we have

XPGi;k �
ds1

2

� �2

�Hx dH

dx
N 2

0 : �16�

Equation (16) shows that as long as the bottom is sloping, the difference version of the HPG force
will not be equal to the true (zero) value. Furthermore, reducing the spacing of the uppermosts-level

Figure 3. Hydrostatically (a) consistent and (b) inconsistent spacing between two neighbourings-levels. Index x denotes partial
differentiation with respect to this variable
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to half its original value will reduce the error by a factor of one-quarter. This has also been confirmed
in numerical tests.

When the density perturbation is ageneralfunction ofz only, it can be shown11 that the truncation
error of Fi;k in (13) can be written as

E�Fi;k� �
�Hx
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wheredH � Hi ÿ Hiÿ1. From this expression it is seen that the error vanishes locally if
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It is interesting to note that (18) is exactly the limiting value for maintaining hydrostatic consistency;
see (11). This indicates that it actually can be beneficial to be on the verge of breaking this condition.
On the other hand, it also demonstrates that when this condition is severely violated, the errors are
increased in proportion.

For more general density distributions it is difficult to find simple expressions for the finite
difference HPG force. Instead, we will in the next section compute this force numerically and
compare the results with analytical results for different density distributions and bottom slopes.

2.2.2. The discrete HPG force as calculated by the method of Stelling and van Kester.Recently,
Stelling and van Kester12 presented a new method for the calculation of horizontal gradients ins-co-
ordinate models. Here we will only give a brief summary of the method; the reader is referred to the
original paper for a more thorough discussion.

The basic idea is to change the grid system before calculating the integral term on the right-hand
side of (10). Sketches of the originals-co-ordinate system and the redefined grid system are given in
Figure 4(a) and 4(b) respectively.

The positions of the density points are identical in the two systems. The new rectangular grid is
then defined so that the density points are located centrally within each grid box. If there are a total of
N s-levels (N� 4 in the example shown in Figure 4), the horizontal sides of the grid boxes divide the

Figure 4. Grid cell structure of (a) originals-co-ordinate system and (b) redefined system used by Stelling and van Kester12
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verticalxiÿ1=2 into a maximum of2N ÿ 1 subintervals, as seen in Figure 4(b). Except for the ones at
the top and at the bottom, each of these intervals connects a grid box with the densitiesriÿ1;m on the
left-hand side andri;n on the right-hand side. The aim is then to calculate a representative value of
@r=@x for each of the intervals. In order to accomplish this task, Stelling and van Kester propose the
following stepwise procedure. First, the horizontal density gradient is set directly to zero for those
intervals which only have grid boxes on one side, i.e. near the surface and the bottom. For the
remaining intervals along the linexiÿ1;2, two estimates of the horizontal density gradient,dmr=dx and
dnr=dx, are computed. To help explain how these two values are found for a specific interval, we
refer to Figure 5. For the hatched interval in Figure 5 we define

dmr

dx
�

�rz
�xi; zm� ÿ riÿ1;m

xi ÿ xiÿ1
; �19�

dnr

dx
�

ri;n ÿ �rz
�xiÿ1; zn�

xi ÿ xiÿ1
; �20�

where �rz
�x; z� is given by a linear interpolation formula between the two nearest density values on

either side ofz. Among those intervals separating two neighbouring grid cells, the uppermost and
lowermost ones will have only one (not two) density value available for the computation of�rz

�xi; zm�

and �rz
�xiÿ1; zn�; see Figure 4. In this case the single density value will be used in (19) or (20) instead

of the interpolated value. The final value of the density gradient for each interval is then defined
according to
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Figure 5. Illustration of density points involved in estimation of two values of horizontal density gradient which might represent
value for interval marked by hatched line: (a) points used in computation ofdmr=dx; (b) points used fordnr=dx
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We are thus minimizing the value of the density gradient. As mentioned above, one should also keep
in mind that the density gradient is zero along those intervals where there are no neighbouring
rectangular grid cells.

The HPG force is then given by

1
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Here

�dz�iÿ1=2;n � ziÿ1=2;n�1 ÿ ziÿ1=2;n; n 2 h1; 2N ÿ 1i; �23�

is the length of each interval. In (22),z is the depth where the HPG force is to be computed. The value
of n is chosen such thatz 2 �ziÿ1=2;n; ziÿ1=2;n�1�.

According to Stelling and van Kester,12 one of the main benefits of this new method is that
convergence is maintained even if the condition (11) for hydrostatic consistency is violated.

Since the process leading to (22) is rather complex, the counterparts of (14) and (16) have not been
found for this method. Note, however, that for a rigid-lid ocean both the original BM method and the
new SvK method become identical (and equal to a Cartesian method) when there are no bottom
slopes. Furthermore, for all practical purposes they can be regarded as identical for a constant depth
and free surface ocean as well, as long asjzj � H . The important contribution from the free surface
is through the last term on the right-hand side of (22).

It should be pointed out here that the SvK method is quite costly compared with the BM method
when computer time is considered. This at least is so for the test experiments that have been
performed with our computer code. Stelling and van Kester12 claim that ‘the increase in
computational cost is relatively small’. This may suggest that our code is somewhat inefficient.
Anyway, it is important that the implementation is made such that the particular computer at hand is
utilized in the most cost-efficient way.

2.2.3. A modified version of the SvK method.As will be shown in Section 3, the original SvK
method seems to underestimate the HPG force. However, promising results have been obtained by
modifying the method slightly. Instead of choosing the minimum value of the density gradient as
outlined in (21), we compute the value ofdr=dx simply by interpolating linearly between the two
valuesdmr=dx anddnr=dx into the midpoint of their mutual interval. Along those intervals where
there are no neighbouring grid cells, a zero value is still used for the density gradient. Apart from this
modification the method is as described in the previous subsection. It should be noted that this slight
change in fact makes the whole method equivalent to first interpolating the densities linearly in the
vertical and then computing the gradients in the required depths!

3. TESTING OF PERFORMANCE

In this section we will compare the previously described methods by computing numerically the HPG
forces for some simple analytical density distributions in which the density varies in both the vertical
and the horizontal direction.
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3.1. Experimental set-up

A three-layered system is considered (Figure 6) with constant densitiesrs andrb in the upper and
lower layers respectively. Through the intermediate layer (the pycnocline) the density increases
linearly with depth. The horizontal dependence is achieved by a linear tilt of the pycnocline layer.
This layer is thus bounded by the linesz � h1�x� and z � h2�x� defined as

h1�x� � ÿh0 ÿ a x ÿ
L

2

� �

�

Dh

2
; �24�

h2�x� � ÿh0 ÿ a x ÿ
L

2

� �

ÿ

Dh

2
: �25�

HereL is the total width of the testing area andh0 is the depth of the midpoint of the pycnocline layer
at x � L=2. Furthermore,a andDh are the slope and vertical thickness of the intermediate layer
respectively. The bottom topography is specified as a linear slope according to

z �
Hmax ÿ Hmin

L
�x ÿ L� ÿ Hmin: �26�

From this density field and utilizing the Boussinesq approximation, the HPG force (per unit mass) can
be calculated according to

1
rb
Hzp � g Hz� rÿ1

b

�0

z
Hr dz

� �

: �27�

For simplicity we have explicitly defined the surface elevation to be zero and the HPG force is
therefore zero everywhere in the surface layer. We have also converted the value of the HPG force to
the equivalent geostrophic velocity. This is done simply by dividing (27) by the local Coriolis
parameterf. In the results to be presented below, this velocity is shown instead of the actual HPG
force. The analytical solution for the situation sketched in Figure 6 is therefore given as zero
geostrophic velocity in the surface layer and a constant negative (directed out of the paper)
geostrophic velocity in the lower layer. In the intermediate layer the velocity changes linearly with
depth from the upper to the lower layer value.

A layered system with a sloping bottom as depicted in Figure 6 is typically found off the western
coast of Norway; see e.g. Reference 17. Values representative of the Norwegian Sea area have
therefore been chosen for the different parameters. Seven of these parameters have been kept constant
through all the experiments presented below. The parameters and their values are given in Table I.

Figure 6. Sketch of density field applied in numerical calculation of HPG forces
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The value of the gravitational accelerationg is taken to be 9�81 m s72. With these values the true
HPG force should give a geostrophic velocity ofÿ25 cm s71 in the bottom layer. The width of the
testing area,L, was chosen to fit with the horizontal dimensions of the steeper parts of the Norwegian
continental slope.

A large number of experiments have been performed. The experimental variables which have been
varied are the bottom slope (achieved by modifying the value ofHmin) and the value of the
pycnocline thickness. Since the surface is horizontal in these experiments, the different methods are
identical when the depth is constant, i.e. whenHmin � Hmax. Values ranging from zero to 1000 m
have been used for the pycnocline thicknessDh. In addition, the influence of different horizontal and
vertical grid resolutions has been tested. For obvious reasons, only a fraction of the numerous test
results will be presented here. Nevertheless, the selected material should reveal the most essential
differences between the various methods.

3.2. Experimental results

In order to make the comparison between the different methods as easy as possible, the
corresponding results from the BM method, the original SvK method and the modified SvK method
are presented together as plots (a)–(c) respectively in each of the figures to be shown in this section.

In accordance with the findings of earlier investigators,10,11our experiments have revealed that the
results from the BM method are significantly improved by subtracting the horizontal mean value from
the actual density field before computing the HPG forces. Consequently, the presented results from
the BM method have all been obtained after subtraction of this mean value. For this experimental set-
up the results from the two versions of the SvK method did not show any significant improvement
when the horizontal mean density was removed, so the material from the calculations with these
methods has been presentedwithoutany such subtraction. However, it should be noted that for other
density distributions this removal technique might be beneficial for the SvK methods as well. Tests
have shown that this is at least the case for the rather idealized situation where the density depends
only on the vertical co-ordinatez.

In Figure 7, examples of the error fields produced by the different methods are presented. The
errors are defined as the computed value minus the true analytical solution. These results were
obtained with a bottom slope@H=@x � 3�74 � 10ÿ2, i.e. withHmin � 10 m. In the vertical, 31 equally
spaceds-levels were used, while the horizontal grid distance was 10 km. The positions were the HPG
forces are calculated are marked by plus signs in the plots. It should be noted that in this experimental
set-up the condition for hydrostatic consistency (11) is severely broken. Nevertheless, if one is to
model areas covering the continental slopes of the Norwegian Sea, bottom slopes of this magnitude
must be considered.

Table I. Constant parameters

Parameter Value

f 1�361074 s71

rs 1026�7 kg m73

rb 1028�1 kg m73

h0 800 m
L 80 km
a 2�4361073

Hmax 3000 m
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Figure 7. Departure from analytical solution (converted to equivalent geostrophic velocity) when applying (a) BM method, (b) original SvK method and (c) modified SvK method.
Thickness of pycnocline is 750 m andHmin � 10 m. Contour interval is 2 cm s71
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The error field produced by the BM method (Figure 7(a)) reveals the most characteristic features of
the problems associated with a straightforward computation of HPG forces ins-co-ordinate models.
Large errors of both positive and negative signs are found in the areas where the pycnocline intersects
the bottom slope. The corresponding results from the original SvK method (Figure 7(b)) and the
modified SvK method (Figure 7(c)) clearly demonstrate that application of these methods leads to a
considerable reduction in the computed errors. Maximum errors of about 20 cm s71 were found
when the BM method was applied. This amounts to 80% of the maximum bottom value of
25 cm s71. In the case of the original SvK method the errors were bounded by a value of 5�4 cm s71,
and when the modified SvK method was employed, only errors below 5�0 cm s71 were found.

In the numerical model where these methods are to be applied, the depth-averaged currents (and
hence the volume transports) are calculated from the depth-averaged momentum equations. In these
equations the depth-integrated values of the HPG forces represent important forcing functions. It is
therefore essential that the computational method is able to produce accurate integral values of the
HPG forces. To get some information about these integral properties, the volume transports of the
three error fields in Figure 7 were computed. Surprisingly enough, the large errors of the BM method
contributed only to a small transport ofÿ0�065 Sv, while the errors of the original and modified SvK
methods amounted to 0�81 andÿ0�16 Sv respectively. Even though all these transports are small
compared with the true transport of the analytical solution of 16�5 Sv, the differences are significant.
As will be shown in the following, this tendency of producing the largest erroneous transports is a
characteristic feature of the original SvK method. This is due to the fact that this method
systematically underestimates the HPG forces and thereby produce errors which tend to be of the
same sign. The errors of the other two methods have no preferred sign. Accordingly, they add up to
lower flux values.

The results shown in Figure 7 represent one particular experiment with a very steep bottom slope.
In order to investigate the significance of the bottom topography, similar experiments to those shown
in Figure 7 have been performed with different bottom slopes. As mentioned earlier, the bottom slope
has been changed by varyingHmin between the values of 3000 and 10 m. This implies that the slope
spans the interval from zero to 3�7461072. For each bottom slope the maximum error (cm s71) and
the error-induced transport (Sv) have been stored. In all experiments the thickness of the pycnocline
was 750 m. With these values the bottom reaches the lower border of the pycnocline at a slope value
of 2�1661072 and it breaks through the upper part of the pycnocline at a slope value of 3�1061072.
These experiments have been performed with different vertical and horizontal resolutions as well.

In Figure 8 the maximum error as a function of bottom slope is shown for the three methods. For
each method we have depicted three curves representing vertical resolutions of 16, 31 and 61s-levels
respectively. Here each increase in level leads to a doubling of thes-‘layers’ in the vertical. The
horizontal resolution is 10 km.

For the experiments with 16s-levels the hydrostatic consistency condition is violated for bottom
slopes steeper than about 1�361072. For the other two choices of vertical resolution this requirement
is broken at the smaller slope of 7�961073 and 4�461073. This means that the schemes are
hydrostatically inconsistent long before the bottom reaches the pycnocline layer.

The plots of Figure 8 show that the three methods give identical results when the bottom slope is
equal to zero. Furthermore, the increase in vertical resolution leads to substantial reductions in the
maximum errors for all the methods as long as the bottom is not too steep. It should be noted that the
increase in vertical resolution improves the results even for slopes which far exceed the limiting
values for maintaining hydrodystatic consistency. The results from the BM method (Figure 8(a)), for
example, are improved for all slopes less than about 1�561072, while for the two SvK methods
(Figures 8(b) and 8(c)) the errors are reduced until the bottom reaches the pycnocline layer at the
value of 2�1661072. The largest errors are produced by the BM method when the bottom penetrates
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Figure 8. Maximum error as a function of bottom slope. Vertical thickness of pycnocline is 750 m and horizontal grid distance
is 10 km. (a) BM method, (b) original SvK method, (c) modified SvK method. Results are shown for three different vertical

resolutions
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the pycnocline layer, i.e. for bottom slopes greater than about 3�161072. For these slope values,
errors of 15–20 cm s71, i.e. 60%–80% of the analytical bottom value, are reached. Errors of this
magnitude are not found in the results obtained from the SvK methods, but at least for the high-
resolution experiments a significantincreasein the errors is found for bottom slopes greater than
about 2�261072. This increase is caused by bottom-trapped errors which are produced by the SvK
method’s interpretation of the sloping bottom as a staircase-shaped form; see Figure 4. These errors
are created whenever isopycnals intersect the sloping bottom, and in order to reduce their magnitude,
both the vertical and horizontal resolutions must be improved in proportion. Nevertheless, compared
with the results from the BM method, both the SvK methods clearly represent a remarkable
improvement as far as reduction of errors is concerned. The overall impression is that the modified
SvK method (Figure 8(c)) produces the smallest errors. This is most clearly demonstrated by the
high-resolution curves.

In Figure 9 the computed error-induced transports as a function of bottom slope are given for the
different vertical resolutions. From these plots it is seen that both the BM method (Figure 9(a)) and
the modified SvK method (Figure 9(c)) are capable of producing quite accurate transport values. The
transport calculations of these methods are also distinctly improved by increasing the number ofs-
levels from 16 to 31. Increasing the vertical resolution to 61s-levels, however, does not lead to
further improvements. The results obtained from the original SvK method (Figure 9(b)) clearly
demonstrates that the major drawback of this method is associated with the integral properties. There
is a tendency to produce systematic errors in the integrated values of the HPG forces and thereby
create significant artificial transports. These erroneous transports are reduced as the vertical
resolution is increased, but even with 61s-levels in the vertical the original SvK method results are
still no better than the results obtained from the modified SvK method when only 16s-levels were
employed.

In Figures 10 and 11 the maximum error and the error-induced transport as functions of bottom
slope are presented for differenthorizontalresolutions. In all these experiments a vertical resolution
of 31 s-levels has been applied. The results from each of the numerical methods have then been
computed with horizontal grid distances of 20, 10 and 5 km. With these resolutions the bottom slopes
of 1�361072, 7�361073 and 4�461073 still apply as the limiting values for maintaining
hydrostatic consistency. In contrast with the situation where the vertical resolution was altered, it is
now the high-resolution (5 km) grid which allows the steepest bottom slope.

Many of the features seen in Figures 8 and 9 are repeated in the curves of Figures 10 and 11,
including the large maximum errors produced by the BM method when the bottom reaches the
pycnocline layer (Figure 10(a)) and the large artificial transports created by the original SvK method
(Figure 11(b)). However, the different horizontal resolutions leads to quite interesting modifications
of the results. It was naively expected that the errors would be reduced when the horizontal resolution
was improved. As seen in Figure 10, this is only the case for rather steep bottom slopes. For more
moderate slopes there is anincreasein the maximum errors when the horizontal grid distance is
reduced! The reason for this increase is not fully understood, but our experimental results indicate
that it is linked to the grid’s ability to discern the gentle tilt of the pycnocline. To accomplish this
properly, it appears that the ratio between the vertical and the horizontal grid distance must be
approximately of the same magnitude as the slope of the isopycnals. For the results in Figure 10 this
grid ratio is closest to the value of the pycnocline slope when the horizontal grid distance is 20 km.
When considering the error-induced transports, the results from both the BM method (Figure 11(a))
and the modified SvK method (Figure 11(c)) are improved by an increased horizontal resolution. This
desirable property is not evident in the corresponding results from the original SvK method (Figure
11(b)).
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Figure 9. Volume transport computed from error field as a function of bottom slope. Vertical thickness of pycnocline is 750 m
and horizontal grid distance is 10 km. (a) BM method, (b) original SvK method, (c) modified SvK method. Results are shown

for three different vertical resolutions
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Figure 10. Maximum error as a function of bottom slope. Vertical thickness of pycnocline is 750 m and 31s-levels are used in
vertical. (a) BM method, (b) original SvK method, (c) modified SvK method. Results are shown for three different horizontal

resolutions
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Figure 11. Volume transport computed from error field as a function of bottom slope. Vertical thickness of pycnocline is 750 m
and 31s-levels are used in vertical. (a) BM method, (b) original SvK method, (c) modified SvK method. Results are shown for

three different horizontal resolutions
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In the results presented so far, a relatively thick pycnocline of vertical extent 750 m has been
considered. Since the maximum depth is 3000 m and thes-levels are equally spaced in the vertical,
this means that the pycnocline is rather well resolved, at least in the experiments where 31 and 61s-
levels are applied. In order to investigate the importance of the vertical width of the stratified layer,
this experiment has also been performed with other values of the pycnocline thickness. In Figure 12
the maximum error as a function of bottom slope (i.e. the equivalent of Figure 8) is shown for the
case where the pycnocline was only 250 m thick. It should be noted that the scaling of the vertical
axis has been doubled in Figure 12 as compared with the plots in Figure 8. The curves displayed in
Figure 12 clearly demonstrate that the errors increase substantially as the pycnocline narrows. This is
most apparent in the results produced by the BM method (Figure 12(a)). A pronounced increase in the
errors is also found in the results from the original (Figure 12(b)) and the modified (Figure 12(c)) SvK
method. Apart from the size of the maximum errors, most of the other characteristics of the curves in
Figure 8 are still recognized in Figure 12. These include the improvement achieved at moderate
bottom slopes when the number ofs-levels is increased and the striking lack of such an improvement,
at least for the BM method (Figure 12(a)), for steeper slopes. This is a general trend that has been
seen in all the experimental results: when the pycnocline thickness is reduced, the magnitude of the
errors and the corresponding erroneous volume transports increase, but the spatial distribution and the
relative dependence upon vertical and horizontal resolutions are almost unaltered.

Only themaximumerrors from a large number of individual experiments are given in Figure 12. As
an example of the actual solution which is found by each of the methods for a particular bottom slope,
the calculated geostrophic velocities along a chosen test section are presented in Figure 13. These are
the results from an experiment with a bottom slope of 3�7461072 (i.e. Hmin � 10 m), a horizontal
grid distance of 10 km and with 31 equally spaceds-levels. To facilitate the comparison, the
analytical (true) solution is displayed in Figure 13(d). The weakness of the BM method is clearly
demonstrated in Figure 13(a), where the errors overshadow the true solution almost completely. The
characteristic changes in the signs of the errors are also conspicuous. Results of much higher quality
are pronounced by the two SvK methods. Nevertheless, in the contour plot of the original SvK
method (Figure 13(b)) the previously mentioned tendency of underestimation is obvious. Instead of
the true value ofÿ25 cm s71, absolute values below 22 cm s71 are computed in large parts of the
bottom layer. Accordingly, this velocity field integrates to a volume transport ofÿ13�9 Sv, which is
significantly less (in absolute value) than the true value ofÿ16�4 Sv. The modified SvK method
(Figure 13(c)) exhibits the strongest resemblance to the analytical solution. The most distinct errors
appear as a slight underestimation in the area where the stratified layer meets the bottom. Based on
the velocity field produced by this method, a volume flux ofÿ16�8 Sv was found, i.e. within 0�5 Sv
of the true answer. The most puzzling feature of the results depicted in Figure 3, however, is the fact
that the rather chaotic velocity distribution of the BM method adds up to the true volume transport of
ÿ16.4 Sv! Even though this extraordinary agreement is accidental, the general picture is that the BM
method produce transport values which are approximately of the same accuracy as those found by the
modified SvK method.

The results presented in Figures 7–13 clearly illustrate that there are serious problems associated
with the use of the original BM method. Even when the horizontal mean density is subtracted, this
method introduces large errors in the calculated HPG forces in areas of steep topography. These
problems are not pronounced at locations where the isopycnals intersect the sloping bottom. Our
results also emphasize that when the condition for hydrostatic consistency is severely broken, an
increase in vertical resolution does not reduce the errors. The effect of increasing the horizontal
resolution is more obscure. Generally the errors are reduced in areas of steep bottom slopes and in
most cases they are enhanced in areas of moderate steepness. Nevertheless, as a consequence of the
characteristic alternating signs in the error field produced by the BM method, the computed volume
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Figure 12. Maximum error as a function of bottom slope. Vertical thickness of pycnocline is 250 m and horizontal grid distance
is 10 km. (a) BM method, (b) original SvK method, (c) modified SvK method. Results are shown for three different vertical

resolutions
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Figure 13. Contour plots of computed HPG forces (converted to equivalent geostrophic velocity) when applying (a) BM method, (b) original SvK method and (c) modified SvK
method. In (d) analytical (true) solution is given for comparison purposes. Thickness of pycnocline is 250 m andHmin �10 m. Contour interval is 4 cm s71
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transports through the test section are much better than would be expected. The results also indicate
that these flux calculations are more or less systematically improved when both the vertical and
horizontal resolutions are increased. Since fulfilment of the hydrostatic consistency condition is
presently unrealistic for numerical studies involving both shelf and abyssal areas, this straightforward
method of calculating the HPG force is clearly not satisfactory.

There is no doubt that the original SvK method represents an improvement over the BM method.
The errors are drastically reduced. However, the experimental results reveal quite clearly that a new
problem, associated with the calculations of the integrated HPG forces, is introduced by this method.
This problem, which seems to be linked to a systematic underestimation of the computed HPG forces,
is reduced by increasing the vertical resolution. On the other hand, improving the horizontal
resolution tends to enhance the problem, at least for the steeper bottom slopes.

Based on the presented material (and a large number of additional experiments), we conclude that
the modified SvK method represents a combination of the best qualities of the other two methods.
The errors are small compared with those created by the BM method and the integral properties of the
method are superior to the original version of the SvK method. Even though these results are
promising, we emphasize that the errors and the corresponding artificial transports are still of
considerable size, especially when the pycnocline is poorly resolved in the vertical.

As mentioned in Section 2.2.3, the modified SvK method is equivalent to performing a simple
linear interpolation of the densities in the vertical prior to the calculation of the density gradients. To
reveal the influence of the interpolant, experiments with higher-order interpolation (cubic splines)
have also been performed. Apart from increasing the computer costs, this led only to minor
improvements in the results.

4. NUMERICAL SIMULATIONS WITH THE DIFFERENT METHODS

In the previous section the HPG forces were computed by the various methods and direct
comparisons were made. In this section we will demonstrate the influence on overall model
performance when the different methods are applied in the numerical model. To do so, a simple
geostrophic flow experiment has been performed. As mentioned in Section 1, the time-dependent,
three-dimensional, estuarine and coastal circulation model of Blumberg and Mellor1,2 has been
adopted.

The prognostic variables of this model are the free surface elevation, the three components of
velocity, temperature, salinity (hence density through an equation of state) and two quantities which
characterize the turbulence, namely the turbulent kinetic energy and a turbulent length scale. The free
surface elevation is calculated prognostically with only some sacrifice in computational time so that
tides and storm surge events also can be simulated. This is accomplished by use of a time-splitting
procedure whereby the depth-mean currents and vertical velocity shear are solved separately. The
depth-mean currents and the surface slope are found from the depth-integrated equations, whereas the
velocity shear is computed directly from the primitive equations. It should be noted that the
calculated three-dimensional velocity field is corrected after each time step so as to give the same
depth-integrated values as found from the depth-integrated equations. The vertical mixing processes
are calculated by applying an analytical turbulence closure model of small-scale turbulence.18,19 At
the open boundaries the flow relaxation scheme (FRS) of Martinsen and Engedahl20 is applied.

The equations of the model, together with their boundary conditions, are solved by finite difference
techniques. The computational grid arrangement of points is of the Arakawa C type. The time
differencing is leap-frog and an implicit numerical scheme in the vertical direction has been adopted
for computational efficiency. At every time step the solution is filtered to remove any residual time
splitting due to the leap-frog method.21 For advection a variant of the Lilly32 method is used. The
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Holland and Lin23 scheme is used for the Coriolis force. Horizontal friction is lagged in time for
computational stability. The numerical scheme conserves mass. The total energy is also conserved
except for the time filter and explicit sources and sinks due to friction. For a more thorough
description of this model we refer to Reference 2 and 3.

4.1. Model set-up

The experimental set-up is chosen as a straight channel of length 300 km and with a cross-sectional
geometry and density distribution as in the experiment described in Section 3; see Figure 6. The
tilting pycnocline, in which the density increases linearly with depth, is thus bounded by the lines
defined in expressions (24) and (25), while the bottom topography is given by (26). Neither the
density nor the topography depends on the along-channel co-ordinatey. The values of the physical
parameters are given in Table I. Furthermore, the minimum depth is 300 m, leading to a bottom slope
of 3�37561072. The thickness of the pycnocline has been set to 750 m. Apart from the inherent time
filter,21 the model has been run without frictional influence.

A geostrophically balanced surface elevation and velocity field can easily be constructed from the
density field defined above. We have here chosen a velocity field with zero currents in the bottom
layer. By using a Coriolis parameter with a constant value of 1�361074 s71 and a gravitational
acceleration of 9�81 m s72, this leads to an along-channel velocity of 25 cm s71 in the constant
density surface layer and a surface slope

@Z

@x
�

f

g
vsurf � 3�3 � 10ÿ6

: �28�

Through the pycnocline layer there is a linear decrease in velocity with depth. This current field and
surface elevation were given initially everywhere in the model domain. At the open boundaries, i.e.
within the FRS zones, the geostrophic solution was specified throughout the simulations. To make the
test experiment as simple and straightforward as possible, the model was run in the so-called
diagnosticmode, i.e. the density field was kept fixed throughout the simulation. It should therefore be
stressed that the results below apply to such simulations only.Prognostic continuation, as described
by Mellor et al.,11 has not been considered in this work.

In the vertical direction we used 31s-levels. Since the maximum depth was 3000 m, this means
that the physical spacing between thes-levels was equal to or less than 100 m. The pycnocline of
thickness 750 m is therefore relatively well resolved everywhere. A horizontal grid spacing of 10 km
was used in both thex- and they-direction. The width of the FRS zones was 100 km, i.e. 10 grid
points across.

4.2. Results

Based on the test results discussed in Section 3, it was expected that the deviations from the
analytical solution would be most pronounced when the original BM method was applied. Moreover,
it was believed that the underestimation of the HPG forces in the original SvK method would lead to
some detectable errors in the depth-averaged solutions.

The calculated HPG forces (converted to equivalent geostrophic currents) for this model set-up are
shown in Figure 14. The results obtained with the original BM method are shown in Figure 14(a),
while the original and modified SvK methods produced the results in Figures 14(b) and 14(c)
respectively.

Comparing the data from the BM method (Figure 14(a)) with the analytical (true) values, errors in
the interval fromÿ6�6 to 10�5 cm s71 are found. This means that the maximum errors amount to
42% of the true surface velocity. For the other two methods, smaller but still significant errors were
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Figure 14. Contour plots of calculated HPG force (converted to equivalent geostrophic velocity) when applying (a) BM method, (b) original SvK method and (c) modified SvK
method. Thickness of pycnocline is 750 m andHmin �300 m. Contour interval is 2 cm s71
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detected with maximum values up to about 22% and 17% of the surface value. Here the lowest value
is obtained with the modified version. For all methods the maximum errors are found close to the
bottom in the region where the pycnocline intersects the bottom slope.

Since the density is not changed during a diagnostic model run, the calculated internal HPG forces
shown in Figure 14 will remain practically constant during the simulation. If the free surface is
deflected, the position of thes-levels will be changed in proportion and this might lead to a slight
modification of the calculated HPG forces. However, as long as the depth is much larger than the
surface elevation, which indeed is the case in our experiment, these modifications are insignificant.
Consequently, the internal HPG forces need only be calculated once, i.e. initially, and the increased
computational costs of the SvK methods are therefore hardly detectable in diagnostic simulations.

Ideally, the initial solution should be in dynamic balance with the model equations, so the
prescribed surface elevation and velocity field should remain as a steady solution throughout the
simulation period. However, as a consequence of truncation errors in the numerical model, the
prescribed solution will not be in perfect balance and an artificial dynamic adjustment will take place.
The size of the truncation errors will be reflected by the strength of this adjustment process. To
illustrate the degree of adjustment in our experiments when the different methods are applied, time
series of the total kinetic energy within the model domain are presented in Figure 15. When the
original BM method is applied (Figure 15(a)), large fluctuations are found in the total kinetic energy.
Values which are more than 25% larger than the initial value are occurring at intervals of 60–70 h.
These low-frequency oscillations are most likely caused by topographic (Rossby) waves which are
generated as a result of cross-isobath movements initiated by the errors in the internal HPG terms. In
addition to this long periodic rise and fall in kinetic energy, more rapid fluctuations with the inertial
period, here 13–14 h, are also evident in the time series. When the original and modified versions of
the SvK method are applied (Figures 15(b) and 15(c) respectively), the kinetic energy remains closer
to the specified initial value throughout the 12 day simulation period, signalling that the adjustment
processes are less energetic. Nevertheless, oscillations with near-inertial frequency are readily seen.
These are most clearly revealed in the results obtained with the original SvK method. Based on the
displayed curves, we therefore conclude that application of the original BM method induces the
strongest artificial response. Of the two SvK methods the modified version gives the least response.
This finding supports our claim that the modified SvK method provides the best overall fit to the
correct distribution of HPG forces.

Examples of model-generated velocity distributions are presented in Figure 16, where the along-
channel velocity through a centrally located cross-section of the channel is shown. As a standard of
comparison the initial (analytical) velocity field is given in Figure 16(d), while Figures 16(a)–16(c)
give the velocity after 48 h of simulation with the original BM method, the original SvK method and
the modified SvK method respectively. As expected, the errors are most pronounced when the
original BM method is applied (Figure 16(a)). Inspection of the data shows that these errors range
from ÿ28 to 37 cm s71. These errors are considerably larger than those found in Figure 14(a). One
should also note the peculiar pattern of alternating directions of the currents along the bottom in
Figure 16(a). This is a characteristic feature of the current field when the original BM method is used.
Substantial deviations from the analytical solution are also found when the two versions of the SvK
method are applied. The errors in Figure 16(b) are bounded by the valuesÿ5�0 and 11�7 cm s71,
while the error bounds in Figure 16(c) areÿ5�1 and 10�8 cm s71. The results produced by the two
versions of the SvK method are thus quite similar, and even though they are not offering a completely
satisfactory solution, they definitely lead to improved results as compared with the original BM
method.

Somewhat to our surprise, the calculated volume transports in this specific experiment were not
changed significantly by any of the different HPG methods. The calculated depth-mean currents were
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Figure 15. Time series of kinetic energy within the model domain (FRS zones not included) when applying (a) original BM
method, (b) original SvK method and (c) modified SvK method
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Figure 16. Contour plots of along-channel velocity after 48 h when applying (a) original BM method, (b) original SvK method and (c) modified SvK method. In (d) initial
distribution (i.e. analytical solution ) is given for comparison purposes. Thickness of pycnocline is 750 m andHmin � 300 m. Contour interval is 2 cm s71
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in fact almost identical throughout the simulation and equal to the prescribed analytical solution.
Instead of altering the depth-mean currents, however, the effect of the different HPG methods on the
integrated solution was to modify the surface elevation. Time series of the simulated surface
elevation are shown in Figure 17. The data are taken from four stations which are located
symmetrically along the central cross-section of the channel. For all the methods a slight adjustment
of the surface is seen during the first 10 h. This rapid adjustment, which must be brought about by
fast-moving gravity waves, is most pronounced when the original SvK method is applied (Figure
17(b)). This is in agreement with the results of Section 3, where it was found that this method to some
extent underestimated the integral value of the HPG force. The puzzling fact is that the surface is
modified in such a way that it exactly compensates the errors in the integrated HPG terms! Based on
these results, it is not possible to conclude that the transport calculations will be equally good in more
general cases. A reason for this is that the channel is very narrow in our experiment, i.e. the channel
width is much less than the barotropic Rossby radius of deformation. This means that rotational
effects will be unimportant for this initial adjustment.24 Consequently, since the HPG forces are
identically zero in the along-channel direction, only the depth-averaged current in the cross-sectional
direction and the surface elevation will be influenced by the errors in the depth-integrated HPG
forces. However, the depth-mean currents in the cross-channel direction are effectively forced
towards zero by the channel walls and therefore only the surface elevation is modified. In more open
and complex ocean regions this adjustment may influence the transports as well.

5. CONCLUDING REMARKS

The main goal of this study has been to investigate the inherent problems associated with the
calculation of the internal HPG forces of the primitive equation, sigma-co-ordinate, Blumberg–
Mellor ocean model. Ins-co-ordinate models these problems are most pronounced in areas where the
pycnoclines intersect steep bottom slopes. By performing simple test experiments, where the density
field is allowed to vary in both the horizontal and the vertical direction, severe errors have been
detected. In order to reduce the errors, the alternative method of Stelling and van Kester12 has been
implemented in the BM model. This method basically transforms thes-grid back to a Cartesian
system before the HPG forces are calculated. Our results clearly demonstrate that the errors are
reduced when the SvK method is applied. As shown by the test experiments, however, this method
tends to underestimate the absolute value of the HPG force, which in turn leads to noticeable errors in
the depth-integrated values of the HPG terms. These errors were actually larger than those obtained
with the original BM method. This unwanted effect was avoided by introducing a slight modification
of the SvK method. The modified version was found to retain the best assets of the other two methods
in that it produced small errors as well as accurate integral values. It should be noted, however, that
when there are strong vertical gradients in the density field, substantial errors are also produced by the
modified SvK method. Moreover, the different methods yield practically identical results in areas of
constant depth as long as the deflection of the free surface is negligible compared with the total depth.

A major drawback with the modified SvK method (also the original SvK method), compared with
the straightforward and simpler BM method, is that it is rather time-consuming on the computer. This
is especially the case in so-called prognostic simulations, i.e. simulations where the density field
varies in time. In such situations the internal HPG forces have to be recomputed whenever the mass
field is updated, and the increase in computer time can then add up considerably. This technical
problem should be given priority in future work so as to improve model efficiency.

In this study, simple pressure distributions and bottom topographies have been considered. This has
been done in order to reveal the artificial solutions caused by the numerical scheme. Nevertheless, the
dimensions and physical parameters have been carefully chosen to fit the characteristic values of the
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Figure 17. Time series of surface elevation for four stations symmetrically spaced along central cross-section of channel. (a)
BM method, (b) original SvK method, (c) modified SvK method
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continental slope west of Norway. It is therefore likely that the insight gained from these idealized
experiments is applicable to more realistic simulations covering this geographical region. The
particular importance of an accurate treatment of the HPG force in the areas of steep bottom slopes
stems from the fact that these are regions of strong currents.25,26 It is, for example, well established
that the Norwegian Current, consisting of Atlantic water which enters the Norwegian=Greenland Sea
through the Faroe–Shetland Channel, closely follows the isobaths of the continental slope as it flows
northward. The core of this current leans onto the continental slope and the main vertical shear is
associated with the transition between the saline Atlantic water and the cold Norwegian Sea water
below. However, large temporal variability is observed in this current, indicating that instability
processes are of importance.17 Since such processes originate from the basic current, the success of
modelling this system numerically depends obviously on the model’s capability of accurately
simulating the physical state of this current. In order to determine whether the modified SvK method
complies with these demands, more realistic numerical experiments must be performed. In
association with these experiments, comparison with field measurements should be made.
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